Explainer: What Is Quantum Communication?

Researchers and companies are creating ultra-secure communication networks that could form the basis of a quantum internet. This is how it works.

Go to the profile of MIT Technology Review
MIT Technology Review BlockedUnblockFollowFollowing Feb 22
BlockedUnblockFollow 2月22日

Illustrations: Ms Tech

By Martin Giles

Barely a week goes by without reports of some new mega-hack that's exposed huge amounts of sensitive information, from people's credit card details and health records to companies' valuable intellectual property. The threat posed by cyberattacks is forcing governments, militaries, and businesses to explore more secure ways of transmitting information.

Today, sensitive data is typically encrypted and then sent across fiber-optic cables and other channels together with the digital "keys" needed to decode the information. The data and the keys are sent as classical bits --- a stream of electrical or optical pulses representing
今天,敏感数据通常被加密,然后通过光纤电缆和其他通道与解码信息所需的数字"密钥"一起发送。数据和密钥作为经典位发送 - 表示电脉冲或光脉冲流 1 s and
s and 0 s. And that makes them vulnerable. Smart hackers can read and copy bits in transit without leaving a trace.

Quantum communication takes advantage of the laws of quantum physics to protect data. These laws allow particles --- typically photons of light for transmitting data along optical cables --- to take on a state of
量子通信利用量子物理定律来保护数据。这些定律允许粒子 - 通常是光子光沿着光缆传输数据 - 呈现出一种状态superposition, which means they can represent multiple combinations of
,这意味着它们可以代表多种组合 1 and
and 0 simultaneously. The particles are known as quantum bits,
同时。这些粒子被称为量子比特,or qubits.

The beauty of qubits from a cybersecurity perspective is that if a hacker tries to observe them in transit, their super-fragile quantum state "collapses" to either
从网络安全的角度来看,量子比特的美妙之处在于,如果黑客试图在传输过程中观察它们,那么它们超级脆弱的量子态会"崩溃"到 1 or
or 0 . This means a hacker can't tamper with the qubits without leaving behind a telltale sign of the activity.

Some companies have taken advantage of this property to create networks for transmitting highly sensitive data based on a process called quantum key distribution, or QKD. In theory, at least, these networks are ultra-secure.

What is quantum key distribution?

QKD involves sending encrypted data as classical bits over networks, while the keys to decrypt the information are encoded and transmitted in a quantum state using qubits.

Various approaches, or protocols, have been developed for implementing QKD. A widely used one known as BB84 works like this. Imagine two people, Alice and Bob. Alice wants to send data securely to Bob. To do so, she creates an encryption key in the form of qubits whose polarization states represent the individual bit values of the key.
已经开发了用于实现QKD的各种方法或协议。被广泛使用的BB84就是这样的。想象一下两个人,爱丽丝和鲍勃。 Alice希望将数据安全地发送给Bob。为此,她以量子比特的形式创建加密密钥,其极化状态表示密钥的各个比特值。

The qubits can be sent to Bob through a fiber-optic cable. By comparing measurements of the state of a fraction of these qubits --- a process known as "key sifting" --- Alice and Bob can establish that they hold the same key.
量子比特可以通过光纤电缆发送给Bob。通过比较这些量子比特的一部分状态的测量值 - 称为"关键筛选"的过程---爱丽丝和鲍勃可以确定他们持有相同的密钥。

As the qubits travel to their destination, the fragile quantum state of some of them will collapse because of
随着量子比特到达目的地,其中一些脆弱的量子态将因为而崩溃decoherence. To account for this, Alice and Bob next run through a process known as "key distillation," which involves calculating whether the error rate is high enough to suggest that a hacker has tried to intercept the key.

If it is, they ditch the suspect key and keep generating new ones until they are confident that they share a secure key. Alice can then use hers to encrypt data and send it in classical bits to Bob, who uses his key to decode the information.

We're already starting to see more QKD networks emerge. The longest is in China, which boasts a 2,032-kilometer (1,263-mile) ground link between Beijing and Shanghai. Banks and other financial companies are already using it to transmit data. In the US, a startup called Quantum Xchange has
我们已经开始看到更多的QKD网络出现了。最长的是中国,它拥有北京和上海之间2,032公里(1,263英里)的地面连接。银行和其他金融公司已经在使用它来传输数据。在美国,一家名为Quantum Xchange的初创公司拥有struck a deal giving it access to 500 miles (805 kilometers) of fiber-optic cable running along the East Coast to create a QKD network. The initial leg will link Manhattan with New Jersey, where many banks have large data centers.

Although QKD is relatively secure, it would be even safer if it could count on quantum repeaters.

What is a quantum repeater?

Materials in cables can absorb photons, which means they can typically travel for no more than a few tens of kilometers. In a classical network, repeaters at various points along a cable are used to amplify the signal to compensate for this.

QKD networks have come up with a similar solution, creating "trusted nodes" at various points. The Beijing-to-Shanghai network has 32 of them, for instance. At these waystations, quantum keys are decrypted into bits and then reencrypted in a fresh quantum state for their journey to the next node. But this means trusted nodes can't really be trusted: a hacker who breached the nodes' security could copy the bits undetected and thus acquire a key, as could a company or government running the nodes.

Ideally, we need quantum repeaters, or waystations with quantum processors in them that would allow encryption keys to remain in quantum form as they are amplified and sent over long distances. Researchers have demonstrated it's possible in principle to build such repeaters, but they haven't yet been able to produce a working prototype.

There's another issue with QKD. The underlying data is still transmitted as encrypted bits across conventional networks. This means a hacker who breached a network's defenses could copy the bits undetected, and then use powerful computers to try to crack the key used to encrypt them.

The most powerful encryption algorithms are pretty robust, but the risk is big enough to spur some researchers to work on an alternative approach known as quantum teleportation.

What is quantum teleportation?

This may sound like science fiction, but it's a real method that involves transmitting data wholly in quantum form. The approach relies on a quantum phenomenon known as

Quantum teleportation works by creating pairs of entangled photons and then sending one of each pair to the sender of data and the other to a recipient. When Alice receives her entangled photon, she lets it interact with a "memory qubit" that holds the data she wants to transmit to Bob. This interaction changes the state of her photon, and because it is entangled with Bob's, the interaction instantaneously changes the state of his photon too.

In effect, this "teleports" the data in Alice's memory qubit from her photon to Bob's. The graphic below lays out the process in a little more detail:

Researchers in the US, China,
美国,中国的研究人员,and Europe are racing to create teleportation networks capable of distributing entangled photons. But getting them to scale will be a massive scientific and engineering challenge. The many hurdles include finding reliable ways of churning out lots of linked photons on demand, and maintaining their entanglement over very long distances --- something that quantum repeaters would make easier.
正在竞相创造能够分布纠缠光子的传送网络。但要让它们扩大规模将是一项巨大的科学和工程挑战。许多障碍包括找到可靠的方法来按需生成大量连接的光子,并保持它们在很长距离内的纠缠 - 这是量子中继器更容易实现的。

Still, these challenges haven't stopped researchers from dreaming of a future quantum internet.

What is a quantum internet?

Just like the traditional internet, this would be a globe-spanning network of networks. The big difference is that the underlying communications networks would be quantum ones.

It isn't going to replace the internet as we know it today. Cat photos, music videos, and a great deal of non-sensitive business information will still move around in the form of classical bits. But a quantum internet will appeal to organizations that need to keep particularly valuable data secure. It could also be an ideal way to connect information flowing between
它不会像我们今天所知的那样取代互联网。猫照片,音乐视频和大量非敏感商业信息仍将以经典的形式移动。但量子互联网将吸引那些需要保护特别有价值数据的组织。它也可以是连接信息之间的理想方式quantum computers, which are increasingly being made available through the computing cloud.

China is in the vanguard of the push toward a quantum internet. It launched a dedicated quantum communications satellite called Micius a few years ago, and in 2017 the satellite helped stage the world's first intercontinental, QKD-secured video conference, between Beijing and Vienna. A ground station already links the satellite to the Beijing-to-Shanghai terrestrial network. China plans to launch more quantum satellites, and several cities in the country are laying plans for municipal QKD networks.

Some researchers
Some researchers have warned that even a fully quantum internet may ultimately become vulnerable to new attacks that are themselves quantum based. But faced with the hacking onslaught that plagues today's internet, businesses, governments, and the military are going to keep exploring the tantalizing prospect of a more secure quantum alternative.